Problem Set #5

Exercise 1:

If $S \neq \emptyset$ subset of G then $W_S = \{a_1 \dots a_r : r < \infty, a_r \in S \cup S^{-1}\}$ is a subgroup and is equal < S >.

Solution:

If $s \in S$ then $e = s \cdot s^{-1} \in W_S$, (taking r = 2). If $x = a_1 \dots a_r \in W_S$ then $y = a_r^{-1} \dots a_1^{-1}$ is $= x^{-1} andisinW_S$. Finally, if $x = a_1 \dots a_r$, $y = b_1 \dots b_s \in W_S$, we have $xy = a_1 \dots a_r b_1 \dots b_s$ (a word of length r + s in the symbols $s \in S \cup S^{-1}$). W_S is a subgroup. But if H is any group containing S the element in S^{-1} are in H, so that $S \cup S^{-1} \subseteq H$ and then every word in W_S lies in H. Therefore W_S is the smallest subgroup containing S and $S = S \cap S$.

Exercise 2:

In $(\mathbb{Z}/12\mathbb{Z}, +)$, determine the subgroup H generated by:

- 1. [2].
- 2. [3].
- 3. [2] and [3].

Solution:

- 1. [2]. Then H = < [2] > is $\{m \cdot [2] : m \in \mathbb{Z}\} = \{[0], [2], [4], \dots, [10]\}$ (cyclic group of 6 elements) $\simeq (\mathbb{Z}/6\mathbb{Z}, +)$.
- 2. [3]. Now $H = \{[0], [3], [6], [9]\}$ cyclic group $\simeq (\mathbb{Z}/4\mathbb{Z}, +)$.
- 3. [2] and [3]. H contains all elements r[2] + s[3] for $r, s \in \mathbb{Z}$. $\mathbb{Z}[2] + \mathbb{Z}[3] = \{[k] : k \in \mathbb{Z} \cdot 2 + \mathbb{Z} \cdot 3 \text{ in } \mathbb{Z}\} \subseteq H$. Since $\gcd(2,3) = 1$, $\Gamma = \mathbb{Z} \cdot 2 + \mathbb{Z} \cdot 3$ is all \mathbb{Z} and H is all of $\mathbb{Z}/12\mathbb{Z}$.

Exercise 3:

Prove that if H is a subgroup of $(\mathbb{Z}, +)$, $\exists m \ge 0$ in \mathbb{Z} such that $H = m\mathbb{Z}$.

Solution : For the trivial subgroup $H=\{0\}$ take m=0. If $H\neq 0$ then H=-H. So $H\cap \mathbb{N}\neq \emptyset$. By the Minimum principle, there is a smallest element a>0 in H $a=min\{H\cap \mathbb{N}\}$. Obviously, $\mathbb{Z}\cdot a\subseteq H$. To see $H\subseteq \mathbb{Z}\cdot a$: if $x\in H$ then by the Euclidean division, \exists smallest element a>0 in H, $a=min\{H\cap \mathbb{N}\}$. Obviously, $\mathbb{Z}\cdot a\subseteq H$. To see $H\subseteq \mathbb{Z}\cdot a$, if $x\in H$ then by Euclidean division; $\exists q,m\in \mathbb{Z}$ such that x=qa+r with $0\leqslant r< a$. That implies $r=x-qa\in H-H=H$. But $0\leqslant r< a$ violates minimality of a in $\mathbb{N}\cap H$ unless r=0. Therefore r=0, $x=qa\in \mathbb{Z}x$. $H\subseteq \mathbb{Z}a$. Thus $H=\mathbb{Z}a$.

Exercise 4:

In $(\mathbb{Z}/12\mathbb{Z}, +)$, find all [k] that are cyclic generators with respect to (+). We are looking

for a = [k] with additive order $o(a) = |\mathbb{Z}/12\mathbb{Z}| = 12$.

Solution:

Compute < a > for each a = [0], [1], ..., [11];

а	$H = \langle a \rangle$	o(a) = H
0	0	1
1	$\{0,1,2,\ldots,11\} = \mathbb{Z}/12\mathbb{Z}$	12
2	{0,2,4,6,8,10}	6
3	{0,3,6,9}	4
4	$\{0,4,8\}$	3
5	$\{0, 5, 10, 15 \equiv 3, 8, 13 \equiv 1, 6, 11, 16 \equiv 4, 9, 14 \equiv 2, 7\} = \mathbb{Z}/12\mathbb{Z}$	12
6	$\{0,6\}$	2
-5 = 7	$\mathbb{Z}/12\mathbb{Z}$	12
-4 = 8	same as 4	3
-3 = 9	same as 3	4
-2 = 10	same as 2	6
-1 = 11	same as $1 = \mathbb{Z}/12\mathbb{Z}$	12

Exercise 5:

Suppose a group element $x \in (G, \cdot)$ has the property $x^m = e$ for some integer $m \neq 0$. Then x has finite order o(x), but the exponent m might not be the order o(x) of the element x. Prove that any such exponent m must be a multiple of o(x). (Hint: Letting s = o(x), write m = qs + r with $0 \leq r < s$).

Solution:

Given $|G=n<\infty$, we seek $N\in\mathbb{N}$ such that $x^N=e$, $\forall x\in G$. If we label the group elements $x_1=e,x_3,\ldots x_n$ let $m_k=0(x_k)$ for $1\leqslant k\leqslant n$. Then $(x_k)^{m_k}=e$. Take $N=\prod_{k=1}^n m_k$. Then $x_i^N=(x_i^{m_i})^{N'}$ where $N'=\prod_{j\neq i}m_j$ (by the exponent laws) $=e^{N'}=e$, for every i. Done.

Exercise 6:

Prove that (U_8,\cdot) is not cyclic. Prove that (U_7,\cdot) is cyclic.

Solution:

$$U_8 = \{[k] \neq [0] in \mathbb{Z}/8\mathbb{Z} : gcd(k, 8) = 1\} = \{[1], [3], [5], [7]\}$$

But all elements in this group have multiplicative order o(x) = 2 (expect for [1]) :

$$[1], [3], [3]^2 = [9] = [1], o([3]) = 2$$

 $[1], [5], [5]^2 = [25] = [1], o([5]) = 2$
 $[1], [7], [7]^2 = [49] = [1], o([7]) = 2 (and o([1]) = 1)$

There are no elements of order $|U_8|=4$; so (U_8,\cdot) cannot be cyclic. Compute orders of all elements in $U_7=\{1,2,\ldots,6\}$ (we omit the brackets, looking for an element of order

$$o(x) = 6$$
).

Exercise 7:

If a group G is generated by a subset S, prove that any homomorphism $\phi: G \to G'$ is determined by what it does to the generators, in the following sense :

If
$$\phi_1, \phi_2 : G \to G'$$
 are homomorphisms such that $\phi_1(s) = \phi_2(s)$ for all $s \in S$, then $\phi_1 = \phi_2$ everywhere on G .

This can be quite useful in constructing homomorphisms of G, especially when the group has a single generator.

Solution:

$$\phi_1(s^{-1}) = \phi_1(s)^{-1} = \phi_2(s)^{-1} = \phi_2(s^{-1})$$
, $\forall s \in S$, so $\phi_1 = \phi_2$ on $S_1 \cup S_2$. But $< S >=$ all words $a_1 \dots a_r$ such that $r < \infty$, $a_i \in S \cup S^{-1}$. Then

$$g = a_1 \dots a_r \Rightarrow \phi_1(g) = \phi_1(a_1) \dots \phi_1(a_r) = \phi_2(a_1) \dots \phi_2(a_r) = \phi_2(a_1 \dots a_r) = \phi_2(g)$$